95 research outputs found

    Effects of weight loss and long-term weight maintenance with diets varying in protein and glycemic index on cardiovascular risk factors: the diet, obesity, and genes (DiOGenes) study: a randomized, controlled trial

    Get PDF
    BACKGROUND: We sought to separately examine the effects of either weight loss or diets varying in protein content and glycemic index without further changes in body weight on cardiovascular risk factors within the Diet, Obesity, and Genes study (DiOGenes). METHODS AND RESULTS: DiOGenes is a pan-European controlled dietary intervention study in 932 overweight adults who first lost body weight on an 8-week low-calorie diet and were then randomized to 1 of 5 ad libitum diets for 26 weeks. The diets were either high or low protein or high or low glycemic index in 4 combinations or control. Weight loss (-11.23 kg; 95% confidence interval, -11.54 to -10.92; P<0.001) reduced high-sensitivity C-reactive protein (-1.15 mg/L; 95% confidence interval, -1.30 to -0.41; P<0.001), low- and high-density lipoprotein cholesterol, triglycerides, and blood pressure. During the 26-week weight maintenance period in the intention-to-treat analysis, the further decrease of high-sensitivity C-reactive protein blood levels was -0.46 mg/L greater (95% confidence interval, -0.79 to -0.13) in the groups assigned to low-glycemic-index diets than in those on high-glycemic-index diets (P<0.001). Groups on low-protein diets achieved a -0.25 mg/L greater reduction in high-sensitivity C-reactive protein (95% confidence interval, -0.59 to -0.17) than those on high-protein diets (P<0.001), whereas lipid profiles and blood pressure were not differently affected. CONCLUSIONS: This large-scale intervention study clearly separates weight loss from dietary composition-related effects. Low-glycemic-index carbohydrates and, to a lesser extent, low-protein intake may specifically reduce low-grade inflammation and associated comorbidities in overweight/obese adults

    The effect of protein and glycemic index on children's body composition: the DiOGenes randomized study

    Get PDF
    OBJECTIVE: To investigate the effect of protein and glycemic index (GI) on body composition among European children in the randomized, 6-month dietary intervention DiOGenes (diet, obesity, and genes) family-based study. PATIENTS AND METHODS: In the study, 827 children (381 boys and 446 girls), aged 5 to 18 years, completed baseline examinations. Families with parents who lost >= 8% of their weight during an 8-week run-in low-calorie diet period were randomly assigned to 1 of 5 ad libitum diets: low protein (LP)/low glycemic index (LGI); LP/high GI (HGI); high protein (HP)/LGI; HP/HGI; and control diet. The target difference was 15 GI U between the LGI/HGI groups and 13 protein percentage points between the LP/HP groups. There were 658 children examined after 4 weeks. Advice on food-choice modification was provided at 6 visits during this period. No advice on weight loss was provided because the focus of the study was the ability of the diets to affect outcomes through appetite regulation. Anthropometric measurements and body composition were assessed at baseline, week 4, and week 26. RESULTS: In the study, 465 children (58.1%) completed all assessments. The achieved differences between the GI and protein groups were 2.3 GI U and 4.9 protein percentage points, respectively. The LP/HGI group increased body fat percentage significantly more than the other groups (P = .040; partial eta(2) = 0.039), and the percentage of overweight/obese children in the HP/LGI group decreased significantly during the intervention (P = .031). CONCLUSIONS: Neither GI nor protein had an isolated effect on body composition. However, the LP/HGI combination increased body fat, whereas the HP/LGI combination was protective against obesity in this sample of children

    Diets with high or low protein content and glycemic index for weight-loss maintenance

    Get PDF
    BACKGROUND: Studies of weight-control diets that are high in protein or low in glycemic index have reached varied conclusions, probably owing to the fact that the studies had insufficient power. METHODS: We enrolled overweight adults from eight European countries who had lost at least 8% of their initial body weight with a 3.3-MJ (800-kcal) low-calorie diet. Participants were randomly assigned, in a two-by-two factorial design, to one of five ad libitum diets to prevent weight regain over a 26-week period: a low-protein and low-glycemic-index diet, a low-protein and high-glycemic-index diet, a high-protein and low-glycemic-index diet, a high-protein and high-glycemic-index diet, or a control diet. RESULTS: A total of 1209 adults were screened (mean age, 41 years; body-mass index [the weight in kilograms divided by the square of the height in meters], 34), of whom 938 entered the low-calorie-diet phase of the study. A total of 773 participants who completed that phase were randomly assigned to one of the five maintenance diets; 548 completed the intervention (71%). Fewer participants in the high-protein and the low-glycemic-index groups than in the low-protein-high-glycemic-index group dropped out of the study (26.4% and 25.6%, respectively, vs. 37.4%; P=0.02 and P=0.01 for the respective comparisons). The mean initial weight loss with the low-calorie diet was 11.0 kg. In the analysis of participants who completed the study, only the low-protein-high-glycemic-index diet was associated with subsequent significant weight regain (1.67 kg; 95% confidence interval [CI], 0.48 to 2.87). In an intention-to-treat analysis, the weight regain was 0.93 kg less (95% CI, 0.31 to 1.55) in the groups assigned to a high-protein diet than in those assigned to a low-protein diet (P=0.003) and 0.95 kg less (95% CI, 0.33 to 1.57) in the groups assigned to a low-glycemic-index diet than in those assigned to a high-glycemic-index diet (P=0.003). The analysis involving participants who completed the intervention produced similar results. The groups did not differ significantly with respect to diet-related adverse events. CONCLUSIONS: In this large European study, a modest increase in protein content and a modest reduction in the glycemic index led to an improvement in study completion and maintenance of weight loss

    A multicentre weight loss study using a low-calorie diet over 8 weeks: regional differences in efficacy across eight European cities

    Get PDF
    PRINCIPLES: The efficacy of low-calorie diets (LCDs) has not been investigated in large-scale studies or among people from different regions, who are perhaps unaccustomed to such methods of losing weight. The aim of the present study was to investigate changes in obesity measures among overweight/obese adults from eight European cities (from Northern, Central and Southern Europe) during the 8-week LCD phase of the DiOGenes study (2006–2007), a family-based, randomised, controlled dietary intervention. METHODS: 938 overweight/obese adults completed baseline examinations and underwent an 8-week LCD, providing 3.3–4.2 MJ/day to replace all meals. Anthropometric measurements and body composition were assessed at baseline and post-LCD. RESULTS: 773 (82.4%) adults (mean age, 43.1 y) completed the LCD successfully. The highest drop-out rate was observed in Southern (24.9%) and the lowest in Northern (13.3%) European cities. Overall, the LCD induced favourable changes in all outcomes, including an approximate 11.0% reduction in body weight and body fat percentage. Changes in outcomes differed significantly between regions, with North- and Central-European cities generally achieving higher percentage reductions in most anthropometric measurements assessed. Nonetheless, participants in Southern Europe reduced their body fat percentage significantly more than participants in Northern Europe (–11.8 vs. –9.5%, P = 0.017). CONCLUSIONS: The LCD significantly improved anthropometric and body composition measurements in all cities participating in DiOGenes

    European Association for the Study of Obesity Position Statement on the Global COVID-19 Pandemic

    Get PDF
    open18openFrühbeck, Gema; Baker, Jennifer Lyn; Busetto, Luca; Dicker, Dror; Goossens, Gijs H; Halford, Jason C G; Handjieva-Darlenska, Teodora; Hassapidou, Maria; Holm, Jens-Christian; Lehtinen-Jacks, Susanna; Mullerova, Dana; O'Malley, Grace; Sagen, Jørn V; Rutter, Harry; Salas, Ximena Ramos; Woodward, Euan; Yumuk, Volkan; Farpour-Lambert, Nathalie JFrühbeck, Gema; Baker, Jennifer Lyn; Busetto, Luca; Dicker, Dror; Goossens, Gijs H; Halford, Jason C G; Handjieva-Darlenska, Teodora; Hassapidou, Maria; Holm, Jens-Christian; Lehtinen-Jacks, Susanna; Mullerova, Dana; O'Malley, Grace; Sagen, Jørn V; Rutter, Harry; Salas, Ximena Ramos; Woodward, Euan; Yumuk, Volkan; Farpour-Lambert, Nathalie

    Blood profile of proteins and steroid hormones predicts weight change after weight loss with interactions of dietary protein level and glycemic index

    Get PDF
    Weight regain after weight loss is common. In the Diogenes dietary intervention study, high protein and low glycemic index (GI) diet improved weight maintenance. OBJECTIVE: To identify blood predictors for weight change after weight loss following the dietary intervention within the Diogenes study. DESIGN: Blood samples were collected at baseline and after 8-week low caloric diet-induced weight loss from 48 women who continued to lose weight and 48 women who regained weight during subsequent 6-month dietary intervention period with 4 diets varying in protein and GI levels. Thirty-one proteins and 3 steroid hormones were measured. RESULTS: Angiotensin I converting enzyme (ACE) was the most important predictor. Its greater reduction during the 8-week weight loss was related to continued weight loss during the subsequent 6 months, identified by both Logistic Regression and Random Forests analyses. The prediction power of ACE was influenced by immunoproteins, particularly fibrinogen. Leptin, luteinizing hormone and some immunoproteins showed interactions with dietary protein level, while interleukin 8 showed interaction with GI level on the prediction of weight maintenance. A predictor panel of 15 variables enabled an optimal classification by Random Forests with an error rate of 24±1%. A logistic regression model with independent variables from 9 blood analytes had a prediction accuracy of 92%. CONCLUSIONS: A selected panel of blood proteins/steroids can predict the weight change after weight loss. ACE may play an important role in weight maintenance. The interactions of blood factors with dietary components are important for personalized dietary advice after weight loss

    A distinct adipose tissue gene expression response to caloric restriction predicts 6-mo weight maintenance in obese subjects

    Get PDF
    BACKGROUND: Weight loss has been shown to reduce risk factors associated with cardiovascular disease and diabetes; however, successful maintenance of weight loss continues to pose a challenge. OBJECTIVE: The present study was designed to assess whether changes in subcutaneous adipose tissue (scAT) gene expression during a low-calorie diet (LCD) could be used to differentiate and predict subjects who experience successful short-term weight maintenance from subjects who experience weight regain. DESIGN: Forty white women followed a dietary protocol consisting of an 8-wk LCD phase followed by a 6-mo weight-maintenance phase. Participants were classified as weight maintainers (WMs; 0-10% weight regain) and weight regainers (WRs; 50-100% weight regain) by considering changes in body weight during the 2 phases. Anthropometric measurements, bioclinical variables, and scAT gene expression were studied in all individuals before and after the LCD. Energy intake was estimated by using 3-d dietary records. RESULTS: No differences in body weight and fasting insulin were observed between WMs and WRs at baseline or after the LCD period. The LCD resulted in significant decreases in body weight and in several plasma variables in both groups. WMs experienced a significant reduction in insulin secretion in response to an oral-glucose-tolerance test after the LCD; in contrast, no changes in insulin secretion were observed in WRs after the LCD. An ANOVA of scAT gene expression showed that genes regulating fatty acid metabolism, citric acid cycle, oxidative phosphorylation, and apoptosis were regulated differently by the LCD in WM and WR subjects. CONCLUSION: This study suggests that LCD-induced changes in insulin secretion and scAT gene expression may have the potential to predict successful short-term weight maintenanc

    Caloric restriction induces changes in insulin and body weight measurements that are inversely associated with subsequent weight regain

    Get PDF
    BACKGROUND: Successful weight maintenance following weight loss is challenging for many people. Identifying predictors of longer-term success will help target clinical resources more effectively. To date, focus has been predominantly on the identification of predictors of weight loss. The goal of the current study was to determine if changes in anthropometric and clinical parameters during acute weight loss are associated with subsequent weight regain. METHODOLOGY: The study consisted of an 8-week low calorie diet (LCD) followed by a 6-month weight maintenance phase. Anthropometric and clinical parameters were analyzed before and after the LCD in the 285 participants (112 men, 173 women) who regained weight during the weight maintenance phase. Mixed model ANOVA, Spearman correlation, and linear regression were used to study the relationships between clinical measurements and weight regain. PRINCIPAL FINDINGS: Gender differences were observed for body weight and several clinical parameters at both baseline and during the LCD-induced weight loss phase. LCD-induced changes in BMI (Spearman's ρ = 0.22, p = 0.0002) were inversely associated with weight regain in both men and women. LCD-induced changes in fasting insulin (ρ = 0.18, p = 0.0043) and HOMA-IR (ρ = 0.19, p = 0.0023) were also associated independently with weight regain in both genders. The aforementioned associations remained statistically significant in regression models taking account of variables known to independently influence body weight. CONCLUSIONS/SIGNIFICANCE: LCD-induced changes in BMI, fasting insulin, and HOMA-IR are inversely associated with weight regain in the 6-month period following weight loss

    Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance: the DIOGENES study

    Get PDF
    Fatty acid composition of adipose tissue changes with weight loss. Palmitoleic acid as a possible marker of endogenous lipogenesis or its functions as a lipokine are under debate. Objective was to assess the predictive role of adipose triglycerides fatty acids in weight maintenance in participants of the DIOGENES dietary intervention study. After an 8-week low calorie diet (LCD) subjects with > 8 % weight loss were randomized to 5 ad libitum weight maintenance diets for 6 months: low protein (P)/low glycemic index (GI) (LP/LGI), low P/high GI (LP/HGI), high P/low GI (HP/LGI), high P/high GI (HP/HGI), and a control diet. Fatty acid composition in adipose tissue triglycerides was determined by gas chromatography in 195 subjects before the LCD (baseline), after LCD and weight maintenance. Weight change after the maintenance phase was positively correlated with baseline adipose palmitoleic (16:1n-7), myristoleic (14:1n-5) and trans-palmitoleic acid (16:1n-7t). Negative correlation was found with baseline oleic acid (18:1n-9). Lower baseline monounsaturated fatty acids (14:1n-5, 16:1n-7 and trans 16:1n-7) in adipose tissue triglycerides predict better weight maintenance. Lower oleic acid predicts lower weight decrease. These findings suggest a specific role of monounsaturated fatty acids in weight management and as weight change predictors
    corecore